MOLECULAR HIV SURVEILLANCE:
A GLOBAL REVIEW OF HUMAN RIGHTS IMPLICATIONS
October 2021

Written by:
Alfredo Trejo
Alexander McClelland

for Positive Women’s Network-USA
on behalf of HIV JUSTICE WORLDWIDE

Expert Advisory Group:
Naina Khanna & Breanna Diaz, Positive Women’s Network; Edwin J. Bernard, HIV Justice Network; Marco Castro-Bojorquez, HIV Racial Justice Now; Brian Minalga, Legacy Project; Andrew Spieldenner, US People Living with HIV Caucus; Sean Strub, Sero Project

Designed by:
Kieran McCann

Dedicated to Marco Castro-Bojorquez

We gratefully acknowledge the financial contribution of the Robert Carr Fund to this report.
CONTENTS

EXECUTIVE SUMMARY
4

GLOSSARY OF TERMS
5

WHAT IS THIS BRIEFING PAPER AND WHO IS IT FOR?
7

WHAT IS MOLECULAR HIV SURVEILLANCE? HOW AND WHY IS IT BEING USED?
8
- Molecular HIV Surveillance for research
11
- Molecular HIV Surveillance for public health intervention
12
- Where is Molecular HIV Surveillance being used and who is being targeted?
14
- Where does the data for Molecular HIV Surveillance come from?
15
- What tools are used to undertake Molecular HIV Surveillance?
16

WHAT ARE THE CONCERNS WITH MOLECULAR HIV SURVEILLANCE?
19
- Consent and autonomy violations
19
- Lack of community consultation and engagement
21
- Stigma on targeted communities
22
- Privacy and data protections
23
- Concerns about "proving" direct transmission
24
- Concerns about HIV criminalisation
25

RECOMMENDATIONS
27
- Recommendations for researchers and scientists
27
- Recommendations for public health practitioners
28
- Recommendations for legal system experts and actors
29
- Recommendations for people living with HIV
29

METHODOLOGY
30

APPENDIX: LITERATURE REVIEWED
31
- Peer-reviewed scientific literature
31
- Community, research, and government grey literature
34
Molecular HIV surveillance (MHS) is an umbrella term that describes a wide range of practices focused on the monitoring of HIV variants and the differences and similarities between them for scientific research, public health surveillance and intervention. This briefing paper was developed for people living with HIV, activists, legal experts, and human rights campaigners to understand the complexities and consequences of MHS – a growing research and public health surveillance practice that has concerning implications for human rights.

To conduct MHS, scientists rely on the results of HIV genetic sequencing tests taken from people living with HIV – these tests are often done to determine if the individual has a strain of HIV that is resistant to certain treatments. Interest in, and use of, MHS is increasing globally. In some places, MHS is being conducted in ways that puts the rights of people living with HIV in jeopardy. Depending on the circumstances, the reuse of genetic sequencing data is often done without the explicit consent of the individual or communities.

Researchers and public health practitioners are conducting MHS in countries which actively criminalise HIV non-disclosure, exposure and/or transmission. In addition, increased surveillance of people who use drugs, people who sell or buy sex, migrants, and gender and sexual minorities living with HIV, typically leads to greater precarity, stigma, discrimination, and criminalisation. HIV experts and advocates have raised human rights concerns about this technology, including: consent and autonomy; lack of community consultation; increased stigma on targeted communities; privacy and data protections; whether or not the technology can be used to “prove” direct transmission; and how MHS may intensify HIV criminalisation within communities who are already marginalised and oppressed.

To develop this briefing paper, a global scoping review of a literature on MHS was conducted – with 92 pieces of scientific, community, and expert literature from academic peer-reviewed journals, and grey literature from governments and community-based organisations examined overall. Throughout the review process, insight was sought from leading MHS advocates from around the world.

RECOMMENDATIONS

Based on our global scoping review of MHS research and intervention literature, we have produced a number of recommendations for a wide range of stakeholders which can be found at the end of the document. The most important of these are:

1. Take seriously and act upon community concerns about MHS.
2. Respect the bodily autonomy and integrity of people living with HIV in all our diversity.
3. MHS implementers must demonstrate a clear public health benefit that outweighs the potential harms of MHS, including by ensuring protections (i.e., data privacy, legal protections, social harms prevention, etc). These demonstrated benefits of MHS must measurably include people living with HIV.
4. Providers ordering HIV sequencing must inform people living with HIV about how their blood and data are being used for MHS purposes and be allowed to withdraw consent if they so wish, without fear of negative consequences to their HIV treatment and care.
5. Implementers of MHS should publicly advocate against punitive or coercive laws and policies aimed at people living with HIV and ensure that MHS is never used in criminal, civil, or immigration investigations or prosecutions.
MHS is highly technical, and practitioners use many complex scientific terms. To effectively respond to concerns of this growing practice, it is important that impacted individuals and communities understand some of the complex technicalities. Below is a starting list of a number of the key terms used in MHS research and practice.

Glossary of Terms

Cluster
Cluster is an epidemiological term used to describe a group of health events – from infectious disease to cancer diagnoses – that are closely grouped—or “clustered”—in both time and geographic place. In MHS, a cluster is a specific and technical term used to define genetic relatedness between samples of HIV taken from different people. Researchers compare viral mutations from various sources to identify genetic similarities and differences where transmissions are happening at a rapid rate. Genetic similarities are determined by analysing how closely related RNA and DNA of the HIV are (human DNA is not analysed in this process). If scientists identify a group of similar viral mutations where HIV has been transmitted – close to the same time, and in the same location – this is known as a cluster. In some cases, clusters are also known as "transmission networks", or "risk networks". Being identified as part of a cluster does not mean that the people whose blood is being examined have ever come into contact with each other, it only means that there are genetic similarities between the samples of HIV taken from members of the cluster, as determined by the various tools used by researchers. People who are not living with HIV are also identified as belonging to specific clusters/transmission networks through a combination of molecular surveillance and contact tracing.

Cluster detection and response
Cluster detection and response (CDR) is the term used by the United States Centers for Disease Control and Prevention and public health departments across the United States to describe the actions taken once a cluster is identified. These actions may include efforts to link people to care and diagnostics and can also involve – in some instances – contacting police agencies.

Criminalisation
Criminalisation is the process by which certain social behaviours, activities, and individuals are socially classified into crime and criminals. When an issue is criminalised, it becomes understood as something that should be addressed via a criminal legal system and controlled with the threat of punishment, as opposed to being addressed in other ways. Criminalisation may relate broadly to many issues, including drugs, migration, sex work, poverty, and also HIV, where specific laws and policies are developed to regulate and control that issue through policing and the criminal legal system.

Directionality
A term used to describe time-bound relationships between HIV genetic sequences. Some tools used in molecular epidemiology can indicate whether viruses are related, and which strain or sample is "older" and "younger." This is known as directionality, where relationships between strains of the virus are reconstructed in a time-bound, linear direction, like a family tree. Scientists are interested in understanding the directionality of HIV transmission so they can see how closely linked different people may be in a specific cluster and how the virus evolves over time.

Direct transmission
Information on directionality can be used to try and determine if one individual transmitted HIV to another individual, which is known as direct transmission. The scientific method to determine direct transmission is not currently 100% accurate, so inferring who transmitted to whom is only an informed guess. Some researchers are adamant that MHS cannot determine, for example, that Sample A is the source of HIV transmission resulting in Sample B, because the technology only shows relatedness between two samples and is not advanced enough at this time to determine direct transmission between only two people. However, researchers are working to advance the technology to be able to definitively determine direct transmission, although this is likely only possible in highly specialised research settings. However, HIV genetic information can be combined with other sources of information, such as medical records and contact tracing, to infer as to who transmitted HIV to whom.

Genetic sequence
The individual genetic RNA and DNA make-up of a single strain of HIV is commonly referred to as a genetic sequence. Each genetic sequence is taken from a blood sample and is then digitised into a unique code for MHS analysis. A genetic sequence can be used for individual patient care or can be used to identify relatedness to sequences from other people. Once a genetic sequence becomes code it can also be widely shared and stored in large databases for use by many researchers.
HIV criminalisation

HIV criminalisation is the unjust use of criminal and similar laws, policies and practices to police, regulate, control, and punish people living with HIV based on their HIV-positive status. Laws or policies differ around the world and can criminalise a range of activities including alleged HIV non-disclosure prior to sex, potential or perceived HIV exposure through many different means, or unintentional transmission of the virus.

Inference (infer)

Inference is a term used by scientists for the practice of trying to reach a conclusion based on observation, evidence, and reasoning. To infer a conclusion means it is a best guess, and not something that is conclusively proven. In MHS studies and in public health efforts, scientists and public health practitioners may try to infer direction or even direct transmission based on various sources of information.

Informed consent

Informed consent is a cornerstone of ethical scientific research and practice and means that individuals who participate in research should do so voluntarily, understanding the purpose, and its risks and potential benefits, as fully as possible. Where a person has the capacity to understand this information, and the ability to act on it voluntarily, the decision to participate is generally seen as an expression of having the autonomy to decide for oneself. Respect for autonomy is the guiding principle behind informed consent practices, to ensure violations and abuses in research and practice are mitigated.

Longitudinal cohort research study

A longitudinal study is a form of research study which follows participants – often from a specific cohort – over a prolonged period of time, often years and even decades. A cohort study is a particular form of longitudinal study that samples a specific cohort – which is a group of individuals that share a common characteristic, such as a positive HIV diagnosis.

Molecular HIV surveillance

Molecular surveillance for HIV, or MHS, is an umbrella term used to encompass a wide range of research and public health practices, and it can come by many different names, including, *HIV cluster detection and response, HIV genotype analysis, HIV genetic sequencing, HIV phylogenetic surveillance*, among others. Using a range of molecular genetic research techniques, scientists conduct molecular surveillance research to examine evolutionary relationships, similarities and differences between different viral strains of HIV. There are diverse aims of MHS, but generally, the research and public health goals are to understand viral transmission and drug resistance patterns, and to locate areas where new transmissions are happening rapidly so as to intervene and prevent new transmissions. The practice is often done without consent and has multiple privacy and human rights implications.

Phylogenetic analysis

Phylogenetic analysis compares the genetic sequences of organisms by estimating their evolutionary relationship to one another. In MHS, phylogenetic analysis is applied to the genetic sequences of HIV taken from people living with HIV. The viruses are compared using a phylogenetic tree, which is similar to a family tree – to show how close or far apart different sequences are. These phylogenetic trees are used to assist with inferring evolutionary relationships, and similarities and differences between individual HIV strains.

Public health surveillance

Public health is the name usually given to a government department or institution that responds to various health issues and should not be confused as a general term to describe the concept of community health and well-being. Public health departments systematically collect and analyse health-related data to plan, implement, and evaluate public health interventions. This system is understood as public health surveillance, and practitioners in these systems implement MHS in some countries.

Recency assay

A recency assay, also known as a RITA (Recent Infection Testing Algorithm) test, is a tool used by researchers which looks at the levels and proportions of certain antibodies in the blood of someone living with HIV, to estimate whether HIV acquisition was recent – within the previous 4 to 6 months – or if HIV has been present for longer. The tool can generally infer whether or not HIV has been recently acquired, but it is not 100% accurate due to individual variations in the timing of HIV-related antibody production. Used in combination with other MHS tools, recency assays have been able to assist in improving the accuracy of analyses to infer direct transmission.
WHAT IS THIS BRIEFING PAPER AND WHO IS IT FOR?

This paper is focused on the issue of molecular HIV surveillance (referred to throughout this briefing paper as MHS) to help support people living with HIV, activists, legal experts, and human rights campaigners to understand the complexities and consequences of MHS, which is a growing research and public health surveillance practice that has concerning implications for human rights.

Forms of HIV molecular genetic analysis for scientific research, and public health surveillance and intervention – are being implemented and scaled-up across the globe. As the practice has grown, so too have the concerns from communities of people living with HIV, ethicists, and human rights and civil liberties advocates. There have been widespread human rights concerns about the practice, notably around the technology’s implications for consent and autonomy and the potential for intensified stigma and criminalisation resulting from the outcomes of MHS research and public health interventions.

To respond to this context, this briefing paper was developed from a detailed global scoping review of literature on MHS, with 93 pieces of scientific, community, and expert literature from academic peer-reviewed journals, and grey literature from governments and community-based organisations examined overall. Throughout the review process, insight was sought from leading MHS advocates from around the world.

The goal of this paper is to help increase the understanding of what MHS is and the implications of MHS for individuals and organisations working to advance the rights and well-being of people living with HIV. With increased knowledge on the practices of MHS, individuals and organisations can be better equipped to advocate for ending research and surveillance practices with a potential to harm the rights, autonomy, and well-being of people living with HIV.

This briefing paper begins with a detailed explanation of what MHS is and how it is used across the globe, including how the technology works, where it is being conducted, and by whom. The report then describes the growing human rights concerns relating to the use of this technology, specifically as they concern: consent and autonomy; lack of community consultation; increased stigma on targeted communities; privacy and data protections; the technology used to identify direct transmission; and intensified criminalisation. The paper then lists recommendations for the use of MHS which were gathered from the survey of international literature and from members of the Expert Advisory Group. The report concludes with a methodology section that describes how information for this briefing paper was gathered.

HIV JUSTICE WORLDWIDE

HIV JUSTICE WORLDWIDE is a growing, global movement to shape the discourse on HIV criminalisation as well as share information and resources, network, build capacity, mobilise advocacy, and cultivate a community of transparency and collaboration.

The mission of HIV JUSTICE WORLDWIDE is to seek to abolish criminal and similar laws, policies and practices that regulate, control, and punish people living with HIV based on their HIV-positive status.

We believe that this HIV criminalisation is discriminatory, a violation of human rights, undermines public health, and is detrimental to individual health and well-being.

To learn more, and to join the movement, please visit: www.hivjusticeworldwide.org
WHAT IS MOLECULAR HIV SURVEILLANCE? HOW AND WHY IS IT BEING USED?

Epidemiologists, public health practitioners, and infectious disease specialists increasingly use genetic analysis when seeking to understand, identify, manage, and control various disease outbreaks such as influenza, tuberculosis, food-borne disease, COVID-19, and HIV. Generally, such approaches can be called molecular surveillance. Molecular surveillance for HIV, or MHS, is an umbrella term used to encompass a wide range of research and public health practices, and it can come by many different names, including, HIV cluster detection and response, HIV genotype analysis, HIV genetic sequencing, HIV phylogenetic surveillance, among others.

To conduct MHS, scientists rely on the results of HIV genetic sequencing tests taken from individual people living with HIV during routine HIV care in order to test for antiretroviral (ARV) drug resistance, known as genotyping. Depending on the country, people living with HIV may undergo resistance testing when commencing or changing ARVs, or they may have only limited access, for example, through participation in a research study which has more advanced diagnostics than the local healthcare system.

When seeking healthcare, or participating in a research study, newly diagnosed people living with HIV receive a series of blood tests. Blood tests help to indicate the type of HIV someone has, and if any mutations make their version of the virus resistant to certain medications. There are multiple types of HIV, and the virus is constantly mutating and changing. These blood tests are used for individual resistance testing. The results reveal the unique genetic make-up of individual strains of HIV and are used to ensure healthcare professionals provide the correct care and choose the most effective treatment for the person living with HIV. These samples are stored in a database, sometimes linked with an individual’s health records and other times anonymised. It is these samples that are used for MHS without specific consent or permission, which can then be re-used for phylogenetic analysis, where they are compared against a wide range of other samples from many people.¹

The results from these tests are then used for surveillance purposes and are the foundations on which MHS is conducted. Depending on the circumstances, the reuse of genetic sequencing data may be done with or without consent or knowledge of the people from whom the sequences are taken – and the broader communities of people living with HIV.

Along with the genetic sequences derived from resistance testing, multiple other sources of data and information can be collated for MHS analysis, such as demographic details covering age, sex, gender, sexuality, race, ethnicity, location, as well as information on behavioural and other socio-economic characteristics, such as whether the sample has been taken from someone who is known, or assumed, to be a sex worker, a migrant, or a person who uses drugs.

This practice can be conducted by academic researchers, and state-run public health authorities, which is further outlined in the following sections.

One of the apparent justifications promoted for undertaking MHS is that it has been much cheaper to operationalise, as noted by one research team in Canada, “by making secondary use of routinely collected HIV genotypes, this approach is cost-effective, attains near real-time
monitoring of new cases, and can be implemented in all settings in which HIV genotyping is the standard of care. However, the costs of this practice, costs of follow-up public health interventions, and increased surveillance on the lives and human rights of people living with HIV are not accounted for when discussions of cost-effectiveness are heralded by practitioners of molecular HIV surveillance.

In the following sections, we look at the various uses of MHS, for research and public health intervention, as well as where MHS is being deployed, and what tools are used to conduct MHS research.

PHYLOGENETIC ANALYSIS

There is no standardised way to conduct MHS research, as techniques and technologies vary, but a key component of all MHS research and intervention is phylogenetic analysis. Phylogenetic analysis compares the genetic sequences of organisms and determines their relatedness and connectedness.

Phylogenetics is a well-established scientific discipline, but one that is commonly used to study viral dynamics within populations of organisms, rather than to suggest direct virological links between specific individuals.

In MHS, phylogenetic analysis is applied to genetic sequences of HIV taken from people living with HIV. The viruses are then compared using a phylogenetic tree, which is similar to a family tree – to show how close or far apart different sequences are. These phylogenetic ‘gene trees’ are used to assist with inferring evolutionary relationships, and similarities and differences between individual HIV strains. An evolutionary ‘gene tree’ is constructed based on a hypothesis about the relatedness of the samples via a common ancestor on the tree.

Phylogenetics alone cannot conclusively infer direct relationships between two genetic sequences. Leading experts agree that phylogenetic analysis cannot, for example, tell if Sample A is the source of HIV transmission resulting in Sample B, because there could always be individual samples that were not collected between Sample A and B. In 2018, the Expert Consensus Statement on the Science of HIV in the Context of Criminal Law, issued and signed by international leaders in the biomedical fight against HIV, highlights that "phylogenetic analysis alone cannot prove beyond reasonable doubt that one person infected another." While on its own the technology cannot prove direct transmission from one person to another, scientists are increasingly using phylogenetic analysis in concert with other MHS

tools, and in highly controlled research settings, with aims to increase the reliability of direct transmission inferences. As the technology has become more accessible, its role in HIV epidemiological MHS research and public health investigations and interventions has increased, resulting in greater concerns from human rights experts and other activists.

PHYLOGENETICS FOR FORENSICS

HIV-related phylogenetic analysis technology has been around since the early 1990s, and on its own, and not as part of MHS studies, phylogenetic analysis has been used as a forensic tool in HIV criminalisation cases in some parts of the world. The tool has been used during investigation and in court as evidence in attempts to prove, or to disprove, direct transmission in cases where one (or more) people allege that someone has unlawfully transmitted HIV to someone else. In many of these cases, phylogenetic analysis is only examining a very small number of individuals, which differs from MHS studies that often include hundreds and thousands of samples. In some cases, phylogenetic analysis has helped to exonerate individuals who had been investigated by authorities or criminally charged due to alleged HIV exposure or non-disclosure.

The Expert Consensus Statement on the Science of HIV in the Context of Criminal Law calls for a cautious use of phylogenetic analysis as a measure only used to discount possible offences. Guidance for prosecutors in HIV-related criminal cases in England and Wales clearly states that phylogenetic analysis must be used before a case comes to court, and if there are no genetic similarities, the case cannot proceed. However, relatively few countries’ laws require that transmission be proved and very few countries have guidance for prosecutors on HIV-related criminal cases. The United Nations Development Programme (UNDP) released global guidance in June 2021 that included detailed suggestions on the correct use of phylogenetic analysis in criminal cases. In Canada, provincial prosecutors used information from the open access Los Alamos genetic database as evidence, and while the judge noted the data could not prove infection, it was useful "circumstantial evidence" that has been widely accepted in legal cases to identify relationships between genetic samples.

This illustration from the United States Centers for Disease Control and Prevention indicates the flow of data from people living with HIV to MHS research and intervention.

12 R. v. Aziga, 2008 (ON S.C)
MOLECULAR HIV SURVEILLANCE: A GLOBAL REVIEW OF HUMAN RIGHTS IMPLICATIONS

MOLECULAR HIV SURVEILLANCE FOR RESEARCH

MHS is widely used around the world for epidemiological research to understand the prevalence of different viral subtypes in certain areas, patterns of drug resistance, and to identify areas where transmissions are happening at a rapid rate (often identified as clusters, transmission networks, or risk networks).

For research, MHS takes place in a number of general ways, either as one aspect of analysis for large-scale longitudinal cohort research studies, or other research projects, where participants are recruited in a research or clinical setting using standard study recruitment methods. In some cases, such research also aims to try to infer who transmitted HIV to whom. Participation in research studies requires initial patient consent, which is a cornerstone of ethical science. Each country has different consent standards, but it is against medical and scientific ethics to conduct research on people without their knowledge, or without informing them of the potential risks and benefits involved in the specific research. Informed consent is voluntary and means that people living with HIV will have a research project explained to them, and then asked if they consent to participate. They then have the choice to decide if they want to be involved in the research or not, or they could withdraw at a later date.

In some cases, the consent process may involve informing the person living with HIV that what they provide during the research study (e.g., blood tests) may be used in the other research for multiple future uses and different kinds of secondary analysis, including MHS. But the content and extent of the information provided during the consent processes varies and may be lacking. In some cases, with both large longitudinal cohort studies and other research studies, the anonymised genetic sequences of all participants in the study are available online indefinitely in databases for a wide range of future research projects. This means that a person living with HIV may have provided consent to participate in an initial research project but might not know that their unique genetic sequence is now available for other researchers to use and study.

MOLECULAR HIV SURVEILLANCE FOR EPIDEMIOLOGICAL RESEARCH

COUNTRY EXAMPLE: UNDERSTANDING VIRAL SUBTYPES IN BANGKOK, THAILAND

Researchers in Thailand conducted genetic analysis on samples collected from a longitudinal study of gay men and other men who have sex with men in Thailand who were diagnosed with HIV from 2009 to 2015. The goal of the study was to support vaccine research and development by understanding the genetic diversity of the virus in Thailand and Asia at large. The researchers utilised data from the Los Alamos National Laboratory HIV Database to conduct transmission network analysis. The analysis suggests that one strain and subtype of HIV is prominent in Thailand, but there was a slight rise in certain strains which were traditionally located in concentrated epidemics among certain populations. As a result, the study recommends a wide range of prevention and treatment approaches because populations are becoming more connected.

The research was conducted with an informed consent process, but it is unclear if the researchers explained how people’s blood samples would be used in an ongoing way for MHS. This means that people may have only consented to have a blood sample taken but may not have been provided with detailed information about what that blood sample would be used for in the future. Furthermore, it is unclear if the samples from the Los Alamos National Laboratory HIV Database were used with informed consent. Many

people living with HIV are unaware that their own genetic sequences are housed in the database, and that those samples can be widely used by researchers around the world.

MOLECULAR HIV SURVEILLANCE FOR PUBLIC HEALTH INTERVENTION

MHS is used in certain regions of the world – most notably in North America and certain European countries – by health departments. The aim is to rapidly and accurately identify similar strains of the virus that can be connected into what are known as *clusters*, that may not be captured by other routine public health investigations as close to “real time” as possible, where transmission clusters are taking place. Authorities then intervene with “enhanced public health” approaches to connect people to treatment and care or testing and diagnostics. When conducted by public health authorities, the practice can be called *Cluster Detection and Response*, as the surveillance information is not only studied, but also acted upon by public health practitioners as various forms of direct intervention in people’s lives.

According to MHS practitioners, public health responses designed to follow up on patterns identified through MHS purport to link people to care and diagnostics, but there are concerns among activists and communities living with HIV that they may involve more coercive outcomes. US-based networks of people living with HIV have called for a suspension (moratorium) on MHS used for public health intervention in the country due to a range of ongoing concerns, including that public health workers may lack cultural competencies and may act in racist, homophobic, transphobic, and drug use stigmatising ways, exacerbate criminalisation, and could fuel ongoing issues of mistrust between public health authorities and people living with HIV.

In some countries, the outcome of HIV-related public health investigations may lead to legally mandated treatment and counselling, or even intervention by law enforcement. In Canada, for example, legal public health orders, which can be the outcome of a public health investigation, can mandate people living with HIV to live under a curfew, attend regular counselling, use condoms and/or take antiretroviral medications, disclose their condition to all potential sex partners (regardless of whether or not they are virally suppressed and undetectable), along with other measures – including engaging law enforcement – if the person is deemed to be a public health risk by authorities.

As pointed out by US networks of People Living with HIV in their call for an MHS moratorium, such coercive approaches by public health authorities may heighten stigma and could lead to criminalisation, deportation, or other negative outcomes.

The advancement of MHS for public health intervention in the United States is being rolled out widely, where all people living with, and susceptible to, HIV are affected. The approach is being hailed by the United States CDC as “a critical step toward bringing the nation closer to the goal of no new infections”.

The CDC is promoting this approach as a way to collect information on everyone living with HIV, including communities who are not commonly connected to government health systems, such as people who use drugs, migrants, Black, Indigenous, and other people of colour, people who sell sex, gay men and other men who have sex with men, adolescents, people who live in poverty, and people in rural communities.

MHS FOR PUBLIC HEALTH INTERVENTION

In June 2014, the MHS monitoring system in British Columbia, Canada detected the expansion of a cluster by eleven new cases during three months, including eight cases with transmitted drug resistance. The cluster comprised young gay men and other men who have sex with men, who were contacted for “enhanced public health follow-up to ensure linkage to care and treatment initiation.” That involved public health authorities directly contacting the young men and encouraging them to seek care and testing. The additional benefit of MHS is questionable, however, because all of the nine cases associated with this follow-up had already been linked to care, and five cases had already started treatment.

WHERE IS MOLECULAR HIV SURVEILLANCE BEING USED AND WHO IS BEING TARGETED?

MHS is being mobilised across all regions of the world in many countries for a wide range of varied purposes. In parts of North America and Europe, public health departments have mandated the use of MHS to inform ongoing surveillance and intervention, where rights to consent and privacy are suspended. In other regions, MHS is primarily utilised for epidemiological research to identify viral subtype and resistance patterns.

In countries around the world with active criminalisation regimes targeting populations most impacted by HIV, MHS studies have often focused on gay men and other men who have sex with men, trans women, people who sell sex and/or use drugs, and migrants. However, discussions about the impact of MHS research and intervention on criminalisation and human rights are often very limited in the literature. Due to the public availability of some MHS data sets, via genetic sequencing databases, researchers from around the world can freely study various regions and countries, based on what data is available and has been submitted to public databases.

MOLECULAR HIV SURVEILLANCE IMPLEMENTATION: EUROPEAN UNION

In 2017, researchers conducted a study to assess the MHS capacity of European Union countries and found that nineteen out of twenty-one countries reported using HIV sequence data at the national level for drug resistance testing and subtype testing. Fifteen of the countries also used phylogenetic analysis to examine transmission events, while thirteen countries used HIV sequence data for surveillance purposes at the national level. Of most concern is the fact that nine EU countries indicated that clinical, epidemiological, and sequence data were routinely linked for analysis.

WHERE DOES THE DATA FOR MOLECULAR HIV SURVEILLANCE COME FROM?

While all of the data used for MHS studies originates from the blood of people living with HIV, once a genetic sequence is converted into digital code, it can be housed in multiple places, widely shared, and used for varied research purposes – often without the knowledge of people living with HIV from whom the data originated.

The primary sites where data originates for MHS analysis are: databases of genetic sequences, public health surveillance systems, drug resistance surveillance programs, clinical settings, cohort research studies, and other research studies. Genetic sequencing data moves between different sites in various ways. Data might originate in a clinical setting, and also be reported to a government public health authority, where it is then sent to a government-run public health surveillance system. That same data may then also be used for research (as clinical sites are also often research sites), and clinical researchers might also send all their data to a genetic sequencing database.

DATABASES OF HIV GENETIC SEQUENCES AND DRUG RESISTANCE SURVEILLANCE PROGRAMMES

To conduct MHS related research, epidemiologists can use publicly available data sets, via genetic sequencing and drug resistance databases, or also private databases owned by healthcare companies. For public databases, researchers around the world can freely study various regions and countries, based on what data is available and has been submitted to the databases.

UNITED KINGDOM DRUG RESISTANCE DATABASE (link: http://www.hivrdb.org.uk/)

This is a centralised database where all routine resistance tests are received annually from fifteen participating virology laboratories across the United Kingdom. On the database website it notes that: “where possible, tests are linked (using pseudo-anonymised patient identifiers) to clinical data, the UK Seroconverter Register, and to surveillance data at Public Health England.”

LOS ALAMOS NATIONAL LABORATORY HIV DATABASE (link: https://www.hiv.lanl.gov/content/index)

This is a leading genetic sequencing database, which includes a wide range of sequences from around the world. The database is open access, and according to the website “the number of sequences in the HIV database is still increasing. In total, at the end of 2017, there were 812,586 sequences in the HIV Sequence Database, an increase of 8.5% since the previous year.”

STANFORD UNIVERSITY HIV DRUG RESISTANCE DATABASE (link: https://hivdb.stanford.edu/)

This drug resistance database is housed at Stanford University and, as indicated by the website, is noted as being a: “curated public database, to represent, store and analyse HIV resistance data. It houses virus sequences from 213,273 persons and includes genotypes from 15 clinical trials.”

SPREAD PROGRAMME (STRATEGY TO CONTROL SPREAD OF HIV DRUG RESISTANCE) (link: https://www.esar-society.eu/spread-surveillance-program)

SPREAD is a HIV-drug resistance surveillance program executed under the authority of the European Society for Translational Antiviral Research. Within the SPREAD program clinicians, virologists, and epidemiologists from 28 European countries are actively involved in the surveillance of transmission of drug resistant HIV.
MHS data is often combined with other available public health, clinical, and behavioural data. In many cases, to conduct MHS studies, genetic sequence data is combined with other sources of data, such as demographic data including age, sex, gender, sexuality, race, ethnicity, location, as well as information on behavioural and other socioeconomic characteristics, such as someone who is known, or assumed, to be a sex worker, migrant, or person who uses drugs, all of which can come from a diverse range of sources.

WHAT TOOLS ARE USED TO UNDERTAKE MOLECULAR HIV SURVEILLANCE?

A range of diverse computational and algorithmic tools are used to undertake MHS analysis. The tools are often open-access software packages, available online, which can be used for free by anyone with a powerful enough computer. Published peer-reviewed literature on MHS tools demonstrates their uses, promotes their success, and encourages their uptake. Epidemiologists, infectious disease specialists, and public health practitioners, use diverse and varied arrangements of MHS tools to undertake their analyses.

Tools designed to undertake MHS aim to estimate genetic relationships between HIV sequences. As technology develops, some of these tools are able to determine if the strains of...
HIV are related, and this information can be used to estimate who transmitted HIV to who. One such tool is PHYLOSCANNER, the developers of which note:

“Great care must be taken to correctly interpret the ancestry of pathogens infecting individuals. Even if ancestry were established beyond any doubt, individual X’s pathogen being ancestral to individual Y’s pathogen does not imply that X infected Y: The pathogen could have passed through unsampled intermediate hosts.”

While there is a scientific consensus that it is impossible for phylogenetics alone to prove direct transmission, it remains to be seen when combined with other MHS tools, or conducted in controlled settings, if phylogenetic technologies will advance to the point where direct transmission can be determined conclusively. In a 2021 longitudinal cohort study, researchers state they were able to infer direct transmission with up to 93.3% accuracy. However, their research was conducted under highly controlled conditions, and they had detailed information on the sex partners of each participant in the study. The researchers note that outcomes of their study would not be reproducible in the real world, as all the unknowns and gaps in data make such analysis impossible.

However, the ability of some MHS practitioners of phylogenetics to continue to seek to infer direct transmission events alone poses great risks to people living with HIV – many of whom belong to populations already targeted or treated unfairly by criminal legal systems. The ongoing push to try and infer who transmitted whom, and the resulting research, could easily be misinterpreted or miscommunicated in the media, or taken up incorrectly by police, or in courts, and could increase stigma and further HIV criminalisation.

The ongoing drive to prove who transmitted whom through this technology comes from the same impetus that drives HIV criminalisation, which is rooted in an outdated stigmatising logic that there are certain individuals we must identify, blame, and detain in order to control communicable disease transmission. Such responses view HIV transmission as highly individualised, where certain people are labelled as vectors of transmission, and viewed as the only ones who hold responsibility for transmission. However, communicable diseases, such as HIV, are profoundly social, where we all hold accountability and responsibility, and to respond effectively requires large structural social changes to ensure all people are supported and have access to what they need to realise their health and wellbeing.

<table>
<thead>
<tr>
<th>Name</th>
<th>What the tool does</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-TRAnsmision Cluster Engine (HIV-TRACE)</td>
<td>This tool was created by researchers at the University of California, San Diego to generate network diagrams of clusters based on genetic data.</td>
</tr>
<tr>
<td>Secure HIV-TRACE</td>
<td>This is a version of HIV-TRACE that is mandated by the CDC to be used across the United States to conduct local analysis at public health departments.</td>
</tr>
<tr>
<td>PHYLOSCANNER</td>
<td>Developed by researchers at the University of Oxford and the Imperial College of London, this tool aims to allow for the inference of the direction of transmission from sequenced data. The developers note that there can be unsampled sequences, but that the tool can identify transmission chains.</td>
</tr>
<tr>
<td>Bayesian Evolutionary Analysis Sampling Trees (BEAST)</td>
<td>Software created by the University of Auckland to examine the temporal evolutionary rates and similarities between sequences. BEAST allows people to use a different approach – known as Bayesian – to doing phylogenetics and molecular epidemiology.</td>
</tr>
<tr>
<td>RITA (Recent Infection Testing Algorithm)</td>
<td>RITA is an algorithm that can assist with estimating whether infection is recent or not in people already diagnosed as HIV positive. RITA takes the result of a recency assay and combines it with other patient information to give an overall estimate of when an infection might have occurred. Like MHS, it is not accurate enough to determine timing of HIV acquisition definitively.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cluster Picker</td>
<td>Developed by researchers at the University of Edinburgh, this tool identifies and analyses clusters of sequences. The tool, like all of the above ones, allows researchers to compare pathogen transmission dynamics between genetic sequences so as to define and construct clusters.</td>
</tr>
</tbody>
</table>

WHAT ARE THE CONCERNS WITH MOLECULAR HIV SURVEILLANCE?

This section summarises the main themes of the grey material we collected and the peer-reviewed papers that critique the use of MHS. There is a large and growing body of literature that explores the ethical concerns surrounding these tools. Experts and advocates have been involved in working groups and meetings with researchers, health departments, and agencies to discuss their apprehensions about MHS. Key human rights concerns with MHS include:

- Consent and autonomy,
- Lack of community consultation,
- Increased stigma on targeted communities,
- Privacy and data protections,
- Technology being used to "prove" direct transmission, and
- Intensified criminalisation.

There is an understanding that there needs to be a balance between the privacy of people living with HIV and any possible benefits to public health. In fact, several of the critiques against MHS often couch their recommendations in a manner that still allows for limited use of MHS. However, advocates argue that the unaddressed concerns can damage trust between people living with HIV and health departments and healthcare workers, potentially deterring people from seeking care. Furthermore, advocates claim that the information gained from MHS is redundant because the populations at risk have often been identified and connected to care and services using existing surveillance methods that do not have the same ethical concerns as MHS. Thus, advocates and people living with HIV have called on researchers and public health departments to provide stronger explanations on how the results of MHS can better serve the lives of people living with HIV, instead of just being a new advanced surveillance technology that tells us what we already know on the ground. However, in response to criticism, practitioners of MHS maintain that "the public good of HIV surveillance justifies this approach." However, this argument misses that the suspension of rights and any resulting harms done to people living with HIV are still harms done to the public. People living with HIV are a part of the public and harms done to the human rights of communities of people living with HIV have wide-ranging impacts for all of society. If communities of people living with HIV are made more precarious, under increased surveillance, they will have less capacity and ability to flourish, contribute and participate to support themselves and each other.

CONSENT AND AUTONOMY VIOLATIONS

At the heart of all of the concerns are consent and autonomy violations. As explained earlier, much of the MHS research uses gene sequences from samples that are obtained from HIV genetic sequence databases, public health department surveillance systems, and drug resistance surveillance programmes. People living with HIV give consent to their blood sample being sequenced to identify if they have a strain of HIV that is resistant to certain drug treatment. However, many people do not consent to having their data used in any other way outside of informing their doctor to receive better care. The patient has no idea their data is stored in databases and that anyone outside of their doctor would have access to it. Many public health departments and researchers around the globe argue that MHS is simply just another
piece of public health information and that they have a right to collect it to monitor infectious diseases and prevent further spread. This is a similar argument used for names-based HIV surveillance in the U.S. and across the world.24 However, the four principles of medical ethics — autonomy, beneficence, non-maleficence, and justice25 — strongly suggest that to respect the human rights of people living with HIV, we must respect their right to make informed decisions. Experts and advocates who raise concerns about consent and autonomy argue that without informed consent, health departments are undermining trust with people living with HIV and their advocates because MHS raises concerns about confidentiality.

CONSENT AND AUTONOMY IN MOLECULAR HIV SURVEILLANCE RESEARCH

COUNTRY EXAMPLE: UNITED STATES STUDY ASKING PEOPLE LIVING WITH HIV IF THEY WOULD CONSENT TO PARTICIPATE IN PHYLOGENETIC RESEARCH

In one study in Boston, MA, U.S., researchers approached 90 patients to see if they would provide informed consent to phylogenetic research. Half of the patients approached did not consent to participate, mostly after reading the study materials and consent form. Reasons for not participating included unwillingness to discuss their HIV status, privacy and confidentiality concerns, disinterest, and lack of time. The researchers note that the high opt-out rates and concerns about discussing one’s HIV status reflect to some extent the stigma surrounding HIV in Boston.

COUNTRY EXAMPLE: UNITED KINGDOM STUDY ASKING ABOUT THE ACCEPTABILITY OF USING PHYLOGENETIC DATA IN CLINICAL AND PUBLIC HEALTH PRACTICE

Researchers conducted focus groups and in-depth interviews with 40 individuals in Brighton and London, England. The participants were a mix of HIV-positive gay men and other men who have sex with men, HIV-positive Black African men and women, HIV-negative gay men and other men who have sex with men, and healthcare workers in the HIV field. The conclusion of the study was that acceptance of the use of phylogenetic was dependent on the perceived risks and the public health benefits. Furthermore, if phylogenetic data was used without addressing certain concerns (mainly informed consent, data protections, and benefits to HIV-positive communities), there was a potential risk of individuals disengaging from testing or care.

COUNTRY EXAMPLE: CHINESE STUDY WHERE CONSENT WAS PROVIDED, BUT THE CONTENT OF CONSENT WAS UNCLEAR

The Zhejiang Provincial Center of Disease Control and Prevention in China reviewed and approved an MHS study. The Institutional Ethics Committee approved the study because written informed consent was obtained by all 806 study participants. However, the authors of the study did not provide details on what information was communicated about genetic sequencing and ongoing future use of the data via the consent form and process. Unfortunately, this is the case with the overwhelming majority of studies across the globe.

24 Lee et al. “Ethical Justification for Conducting Public Health Surveillance Without Patient Consent.” 2012

LACK OF COMMUNITY CONSULTATION AND ENGAGEMENT

Community engagement is a crucial and ethical component of research due to distrust of health research and medical care in historically marginalised communities. Virtually every piece of grey literature collected mentioned the importance of public health departments and researchers fostering a collaborative relationship with stakeholders in their local community. The general consensus is that most public health strategies, including identifying participants, providing targeted interventions, developing outbreak and communication plans, and protecting data, all involve working with community-based organisations. While some health departments have established contacts with affected communities, the degree of engagement varies. MHS research, public health surveillance, and public health intervention occurs without the explicit consent from people living with HIV, which increases the importance of community consultation and engagement to mitigate any potential social harm. Experts and advocates have not only called for more community engagement, but for MHS research to be helpful to communities living with HIV. Again, we recall the four principles of biomedical ethics, especially beneficence and non-maleficence. As others have argued, “Whenever we try to help others we inevitably risk harming them; health care workers, who are committed to helping others, must therefore consider the principles of beneficence and non-maleficence together and aim at producing net benefit over harm.”

“HIV experts and advocates assert that community engagement should be centred throughout the research project and public health intervention to ensure that the research not only avoids harming people living with HIV but that it is ultimately beneficial for communities living with HIV.”

COUNTRY EXAMPLE: UNITED STATES STUDY WHERE INFORMED CONSENT FOR MHS AND FUTURE RESEARCH WAS PROVIDED

The UC San Diego Primary Infection Resource Consortium (PIRC) is the largest, most intensively studied, and well-characterised longitudinal cohort of acute and early HIV infected individuals in the U.S. In their consent form, they communicate to participants “Blood will be collected for storage for future HIV testing, other genetic testing, and other assays, as determined by the results of this and future studies.”

COMMUNITY ENGAGEMENT

COUNTRY EXAMPLE: UNITED STATES CENTERS FOR DISEASE CONTROL AND PREVENTION COMMUNITY ENGAGEMENT EFFORTS

In 2019, the United States Centers for Disease Control and Prevention conducted three virtual meetings with “state and local health departments, representatives of community-based organisations including people with HIV, national organisations representing state and local health departments, academics, and experts in public health ethics and law” to discuss best practices in reducing harms and strengthening data protections. The number one theme of the discussions was the vital role of community engagement for any aspect of public health, especially MHS. "Many participants identified a need to go beyond HIV planning groups, and to make information and engagement accessible to broader communities. Public health agencies can work with communities and organisations to minimise distributive justice issues. Agencies can be aware that communities of color are at increased risk of HIV transmission, as well as often being targeted by policing and immigration enforcement, and consider these perspectives.”

STIGMA ON TARGETED COMMUNITIES

MHS is consistently applied to historically marginalised and criminalised communities. This includes gay men and other men who have sex with men, trans women, sex workers, people who use drugs (primarily those who inject drugs), migrants, and people experiencing houselessness. There is a risk that focusing on these identities can reinforce negative perceptions about these communities. This is especially true when public statements from researchers and public health departments use loaded language with negative connotations (see Greece example, below). Increased stigma of HIV and historically marginalised communities may exacerbate discrimination, which can occur in all aspects of society. HIV-related stigma and discrimination can deter individuals from HIV testing and learning their status, obtaining treatment, or staying in care. 27 If research focused less on individual identities and more on structural factors that increase the probability of acquiring HIV, such as laws and policies that create barriers to accessing prevention and treatment, then that research could decrease discrimination and conclude with a call for a reallocation of resources at a societal level that would reduce inequalities and decrease HIV transmission. Furthermore, much of the results of these MHS studies are already known to people living with HIV and experts working on the ground and could be obtained using existing disease investigation processes utilised by public health departments.

MOLECULAR HIV SURVEILLANCE RESEARCH MAY NOT ADDRESS THE ROOT CAUSES OF HIV DISPARITIES

COUNTRY EXAMPLE: GREEK STUDY

As mentioned previously, much of the MHS research uses data from historically marginalised communities and can increase stigma and discrimination, rather than decreasing a “blaming” mentality or addressing societal factors of HIV transmission. One study in Athens, Greece used MHS to trace the most probable country of origin of HIV seroconversion of HIV-positive migrants who inject drugs. The goal of the study was to investigate if “transmissions occur more frequently among migrants than among Greek nationals.” The results of the study suggest that most migrants acquire HIV post-migration from other migrants and not from Greeks. However, this study does not reference any societal factors, such as criminalisation of irregular migration or drug use in Greece. Instead, the study focused on how “migrants engage in riskier behaviours with other migrants (at least from their own nationality) than with Greeks...[and] that migrants’ risk networks are primarily with other migrants.” This type of research risks being perceived as further stigmatising those it studies, as it does not seek out to address societal barriers against access to prevention and treatment of HIV, and instead focuses on the identities and behaviours of individuals or marginalised communities.

PRIVACY AND DATA PROTECTIONS

MHS tools raise the most concern when they combine multiple data streams from different sources on the individuals they are studying. At their most restrictive, MHS uses fully anonymised data that cannot be traced back to individuals or connected to multiple data streams. However, proponents of MHS have argued that for the most effective public health interventions, more data must be combined. This is alarming from a human rights perspective and is further complicated because public health agencies have historically shared their data with researchers, and funders of such research often require the resulting data to be made public. Experts and advocates have stressed that data should be ethically collected and protected. Some have called for a balance between anonymity and data protection with public health and scientific objectives, but that balance is easier said than done.

In 2011, the CDC published a report titled "Data Security and Confidentiality Guidelines for HIV, Viral Hepatitis, Sexually Transmitted Disease, and Tuberculosis Programs: Standards to Facilitate Sharing and Use of Surveillance Data for Public Health Action" to reach the goal of balancing privacy and data protections with the aims of public health and research. However, as technology continues to advance, true anonymisation becomes harder to obtain. Increases in computational power has made it easier for anonymised data to be re-identified, especially when combined with multiple data streams. Thus, the 2011 guidelines are no longer at the forefront of ethics and privacy. Furthermore, as much of this data is collected and used without informed consent, additional ethical considerations should be in place.

“Experts and advocates have stressed that data should be ethically collected and protected. Some have called for a balance between anonymity and data protection with public health and scientific objectives, but that balance is easier said than done.”

As HIV is highly stigmatised and criminalised across the globe, people living with HIV and advocates fear that MHS data will intentionally or inadvertently identify people living with HIV and/or HIV transmission events. This data could harm countless individuals and groups of people, as marginalised and criminalised communities are often those studied. The largest risk is if the data is shared with law enforcement, the judicial system, and extra-judicial groups targeting people living with HIV. Any breach of confidentiality, inadequate anonymisation, or non-public health uses of this data can increase distrust with health systems and have ripple effects on the livelihood of people living with HIV. For example, the first criminal case in Scotland where an individual was prosecuted for transmitting HIV used forensic evidence that was obtained by a police warrant which forced researchers to re-identify MHS data originally obtained for a study on HIV in prison.29 Situations like this can undermine health care goals because it can waiver people’s beliefs that their healthcare data will only be used for their healthcare.

CONCERNS ABOUT “PROVING” DIRECT TRANSMISSION

The issue of trying to prove direct transmission is controversial and is addressed by many researchers, with widely varying views. In addition, many researchers are not clear in their definitions and conflate directionality with direct transmission, making it challenging for non-scientists to understand or engage in the debates. Directionality refers to analysing if one strain of HIV is related to another strain, and which strain is technically older. This analysis is widespread, and the science is consistent. Direct transmission, however, is a form of analysis seeking to understand if, for example, Sample A is the source of HIV transmission resulting in Sample B – in other words, that this person transmitted HIV to that person. The science behind direct transmission is still contested, and there is concern that such analysis is harmful if it is misused and misunderstood in criminalisation cases, or other instances, such as coercive treatment or immigration proceedings.

The leading experts agree that phylogenetic analysis cannot tell if Sample A is the source of HIV transmission resulting in Sample B because there can always be individual samples that were not collected between Sample A and B. For example, one article stated, “although MHS can identify HIV transmission networks experiencing recent and rapid HIV transmission, [direct transmission] (who transmitted the virus to whom) cannot be determined using molecular data.” However, other authors claim that as technology advances, it may be possible to eventually “prove” direct transmission. One paper stated, “phylogeny cannot determine the [direct path] of HIV transmission without extensive clonal sequencing of the virus populations.” While the consensus on the current technology is clear, some researchers are still trying to “prove,” in controlled settings, that direct transmission can be inferred or determined. For instance, in one study, the authors stated, direct transmission “was assessed through a stratified age and sex prevalence analysis based on the probability of one sampled individual transmitting to another within a cluster being a function of the sequencing coverage and the prevalence in the population.” However, even though direct transmission cannot currently be “proven,” MHS and the attempt to prove direct transmission is dangerous when claims are believed or misinterpreted in the media and in the courts. The stigma, discrimination, and criminalisation of people living with HIV are reasons why “proving” direct transmission has been a key concern for people living with HIV and advocates for years.

CONCERNS ABOUT HIV CRIMINALISATION

There are more than 110 countries that assign criminal liability to people living with HIV who are accused of perceived or potential exposure and/or transmission of HIV. However, few countries have laws that need the prosecution to prove transmission; most prosecute allegations of non-disclosure, potential or perceived exposure and simply assume ‘criminal’ HIV transmission has taken place when the complainant(s) are also living with HIV. All of the previous concerns ultimately converge on how MHS can lead to further accusations that may result in criminal cases. In every jurisdiction in the world, even where health privacy laws exist, MHS data, along with other medical records, can always be subpoenaed by a court and be used as evidence in a criminal investigation or court case if police or prosecutors can persuade a judge to do so. If MHS evidence were included in an investigation or trial, and the results only inferred that the HIV strain of one person was “older” than the strain of another, but the limitations of this evidence were not clearly explained and understood, this could be enough for a conviction. When MHS is used in a country with active HIV criminalisation regimes, this “may lead to a reluctance to
test, failure to disclose contacts and/or refusal of resistance testing. There is evidence that these effects have already occurred. The likelihood of misuse and abuse of these data is high," especially for historically marginalised and criminalised communities.34 While MHS evidence could be used to prove that a defendant did not transmit HIV, access to such data for the defence is extremely limited. Moreover, science often fails to compete against bias in criminal legal systems, which still incarcerate people living with HIV for allegedly using their saliva as a “deadly weapon,” though salivary transmission of HIV is scientifically impossible.35 In most contexts, it is much more likely that MHS would be used against overpoliced and over-incarcerated populations than it would be used successfully in their defence.

While HIV criminalisation has been a topic that advocates and people living with HIV have been concerned about for decades, only seven of the peer reviewed MHS studies explicitly mentioned that HIV criminalisation was a topic that researchers should consider when undertaking MHS studies. The researchers in these seven studies stated that, at a minimum, jurisdictions should consider the ethical implications of selecting persons with specific, readily identifiable characteristics (race/ethnicity, sexual orientation, and transmission risk) for targeted interventions. However, some papers went further and explained in more detail how HIV criminalisation can negatively impact all aspects of public health goals and the practice of MHS itself.

RESEARCH STUDIES OUTLINES HIV CRIMINALISATION AS A BARRIER TO MOLECULAR HIV SURVEILLANCE

COUNTRY EXAMPLE: UNITED STATES STUDY ON MHS FOR PUBLIC HEALTH INTERVENTION PROPOSES THE DECRIMINALISATION OF HIV

The study researchers indicate: “To further the usefulness and safety of these methods, we also propose decriminalisation of unintended HIV transmission during consensual exposure [emphasis added] and legal recognition that phylogenetic linkage using pol sequences does not prove beyond a reasonable doubt that transmission between partners occurred [emphasis added].”

COUNTRY EXAMPLE: CANADIAN MHS STUDY ON GAY MEN AND OTHER MEN WHO HAVE SEX WITH MEN IDENTIFIES CRIMINALISATION AS A BARRIER

The study researchers indicate: “Another challenge for the implementation of HIV phylogenetic monitoring is finding the balance between protecting an individual’s right to privacy and right to refuse medical care, and the public health responsibility to prevent the onward transmission of HIV. This dilemma is exacerbated by the criminalisation of HIV exposure or transmission [emphasis added], because the same phylogenetic methods used for characterising transmission hotspots have also been misused to prosecute individuals for the transmission of HIV. It is further compounded by the widespread use of the terms “transmission network” or ”transmission cluster” to refer to genetically similar virus populations, which implicitly equates a phylogenetic relationship with a transmission event. On the contrary, a molecular phylogeny cannot establish whether the virus was transmitted directly from one individual to another because of the extensive diversity of HIV within hosts and the potential for transmissions through unknown third parties. Furthermore, a phylogeny cannot establish the directionality of HIV transmission without extensive clonal sequencing of the virus populations.”

The following recommendations were developed through the following ways: a) by synthesising existing recommendations we examined in our literature scoping review, to identify the most common themes that arose from scholars and activists concerns on MHS, and b) through ongoing consultation with members of our Expert Advisory Group. These recommendations are not exhaustive in scope, rather they are a base starting point from which to begin our collective work to address concerns on MHS.

The five overarching recommendations are:

1. Take seriously and act upon community concerns about MHS.
2. Respect the bodily autonomy and integrity of people living with HIV in all our diversity.
3. MHS implementers must demonstrate a clear public health benefit that outweighs the potential harms of MHS, including by ensuring protections (i.e. data privacy, legal protections, social harms prevention, etc). Demonstrated benefits of MHS must measurably include people living with HIV.
4. Providers ordering HIV sequencing must inform people living with HIV about how their blood and data are being used for MHS purposes and be allowed to withdraw consent if they so wish, without fear of negative consequences to their HIV treatment and care.
5. Implementers of MHS should publicly advocate against punitive or coercive laws and policies aimed at people living with HIV and ensure that MHS is never used in criminal, civil, or immigration investigations or prosecutions.

For our more detailed recommendations, we have organised them for different stakeholders:

- HIV researchers and scientists,
- Public health practitioners,
- Legal system experts and actors, and
- People living with HIV and their advocates.

While we have placed these recommendations into individual stakeholder categories, many of these recommendations are valid for other areas and stakeholders.

RECOMMENDATIONS FOR RESEARCHERS AND SCIENTISTS

Researchers and scientists have a duty to conduct their work ethically and follow best practices throughout every step of their work, from study design to communicating the results to larger audiences. Therefore:

Studies should be designed to produce knowledge that is the most useful and does the least amount of harm to communities living with HIV.
Researchers should consult with stakeholders, especially people living with HIV, throughout the process to gain full engagement, ensure the balance between community benefit and potential harm, and lessen fears.

Researchers should consider the legal risks of phylogenetic studies by understanding HIV criminalisation laws in the jurisdiction of the study and where data are stored. Additionally, HIV researchers and scientists should be committed to dismantling HIV criminalisation laws.

Robust security measures should be taken with all data, including de-identification, refusing funding from organisations that require publicising data, and having an appropriate committee or board to review data sharing requests.

Informed consent is always required in clinical research, but research involving HIV sequencing must take the most comprehensive, dynamic, and ongoing approach to informed consent. This includes opt-in measures, explaining to participants prior to consent how their data could be used in future studies, and required comprehension assessments to ensure that participants fully understand the risks and benefits of their participation in the study.

Researchers should be prepared to pause, end their study, and not publish findings if any part of the process was not conducted ethically or if the results are potentially more harmful than helpful to communities of people living with HIV.

RECOMMENDATIONS FOR PUBLIC HEALTH PRACTITIONERS

Public health policymakers and practitioners have a duty to ensure that all responses to HIV are grounded in human rights. Therefore:

People in the public health field should monitor policies and practices for any potential discriminatory and stigmatising impact on communities of people living with HIV. If there is potential for harm, people in the public health field should advocate for reform.

Public health surveillance interventions should be people-centred, developed, and conducted using a cultural responsiveness framework. This includes de-linking interventions from law enforcement and not pursuing investigations that can harm people or make their home or workplace unstable.

Public health for people living with HIV should include more than just treatment. For example, if a cluster is identified amongst people who use drugs, multiple other supports and resources, along with HIV treatment, should be provided to people connected to the cluster.

To lessen the stigmatisation and criminalisation of people living with HIV, specific information that could be used to identify individuals in a cluster should not be shared with the media, the police, or the wider public. If findings must be shared, it is up to public health workers to ensure no misinformation is reported, that the story is not sensationalised, and that communities are not further stigmatised or criminalised. When misinformation is reported, public health authorities should publicly correct it.
The bodily autonomy of people living with HIV should be respected and advocated for. This includes informed consent and explaining to people living with HIV how their biometric data can be repurposed in the future for public health. Furthermore, if public health data can be accessed by other agencies (e.g. law enforcement, immigration enforcement, housing), people living with HIV have a right to know and the opportunity to opt out or protect their data.

RECOMMENDATIONS FOR LEGAL SYSTEM EXPERTS AND ACTORS

Public health laws, regulations, and policies have a profound effect on the health of communities and should be created using evidence-based approaches. Furthermore, laws, regulations, and policies that stigmatise, discriminate against, and/or criminalise communities undermine public health goals and diminish human rights. Therefore:

Countries that have them should repeal all HIV criminalisation laws and all countries should ensure non-discriminatory human rights and up-to-date science-based guidance exists for the criminal legal system that severely limits the overly broad use of the criminal law as it relates to allegations of HIV non-disclosure, potential or perceived exposure, and unintentional transmission.

Countries should increase investments in evidence-based programmes that are proven to reduce HIV transmission and acquisition, including community-led responses to criminalisation of people living with HIV, gender identity, sex work, and drug use.

Government funding to public health departments and researchers should be contingent on strong data protections and creating a positive human rights atmosphere for people living with HIV. This includes understanding the legal safeguards and required processes and protections for disclosing public health information to immigration, emergency services and law enforcement.

Phylogenetic analyses should only be used to exonerate individuals in cases related to HIV criminalisation.

RECOMMENDATIONS FOR PEOPLE LIVING WITH HIV

People living with HIV, whether as activists, experts, or ordinary people, can contribute towards addressing the potential harms of MHS. Therefore:

Learn about your local public health surveillance system to understand if MHS is being used in your community.

Advocate against the many intersectional ways that criminalisation and surveillance impact members of the HIV community, including people of trans experience, immigrants, gay and bisexual men, people of colour, people who use drugs, and sex workers.

Be aware of and consider how criminalisation and surveillance impacts members of the HIV community, including people of trans experience, immigrants, gay and bisexual men, people of colour, people who use drugs, and sex workers.
METHODOLOGY

This project utilised a scoping review methodology to understand the quality and scope of the literature on MHS. The goal was to understand where, how, by who, and in what ways MHS is being used globally. As outlined by Tricco, et al. (2018), scoping reviews are useful for answering broad questions, such as, “what is the nature of the evidence for this intervention” or “what is known about this concept?” To collect the data for this project, we utilised the PubMed database and Google Scholar. When gathering our data, we sought to ensure: a global scope with a diversity of site countries, a diversity of uses of MHS (surveillance, public health intervention, etc.), a diversity of populations, the most recent articles, and the most cited articles. Our search included terms that address our criteria, terms that are related to MHS, and terms related to the geographical locations and populations. For example, some of the terms we used include phylogenetic, molecular, HIV, men who have sex with men, transgender, and geographical regions.

There were thousands of results for journal articles published between 2000 and 2021. To manage the large quantities of studies, our approach was not to summarise the entire body of MHS research, but rather to garner a representative sample of MHS studies that met our criteria. As a result, when we saw multiple studies in the same country, or looking at the same population, we limited our analyses, and excluded studies. Articles were manually screened, first by title, and then by abstract to assess relevance based on our eligibility criteria. We also focused on the most cited articles and the newest articles. To date, we have included and examined 72 articles. We have divided the articles into two areas for analysis: peer-reviewed MHS studies 50 and peer-reviewed articles on MHS studies 22.

In addition to the peer-reviewed articles, we also conducted a search for grey literature. Grey literature is any document that is produced by any level of government, academic, business, and industry. Examples of grey literature include presentations, reports, memos, white papers, policies and procedures. The grey literature was obtained by reaching out to various listservs and asking members to submit documents. We reached out to the SERO and HIV JUSTICE WORLDWIDE listservs for documents. To date, we have included and examined 20 pieces of grey literature. In total we have examined at least 92 pieces of literature on MHS.

APPENDIX: LITERATURE REVIEWED

PEER REVIEWED LITERATURE

<table>
<thead>
<tr>
<th>Title of Article</th>
<th>Year Published</th>
<th>Authors</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylogenetic analysis as a forensic tool in HIV transmission investigations</td>
<td>2018</td>
<td>Abecasis, Ana, et al.</td>
<td>AIDS</td>
</tr>
<tr>
<td>Molecular surveillance of HIV-1 field strains in Nigeria in preparation for vaccine trials</td>
<td>2002</td>
<td>Agwale, S.M et al.</td>
<td>Vaccine</td>
</tr>
<tr>
<td>Analysis of HIV-1 pol sequences from Panama: Identification of phylogenetic clusters within subtype B and detection of antiretroviral drug resistance mutations</td>
<td>2009</td>
<td>Ahumada-Ruiz, Sara et al.</td>
<td>Infection, Genetics and Evolution</td>
</tr>
<tr>
<td>HIV genotypes and primary drug resistance among HIV seropositive blood donors in Brazil: role of infected blood donors as sentinel populations for molecular surveillance of HIV</td>
<td>2013</td>
<td>Alencar, CS et al.</td>
<td>J Acquir Immune Defic Syndr</td>
</tr>
<tr>
<td>HIV-1 Diversity, Transmission Dynamicsand Primary Drug Resistance in Angola</td>
<td>2014</td>
<td>Bartolo, Inês et al.</td>
<td>PLOS ONE</td>
</tr>
<tr>
<td>Large cluster outbreaks sustain the HIV epidemic among MSM in Quebec</td>
<td>2017</td>
<td>Brenner, Bluma G, et al.</td>
<td>AIDS</td>
</tr>
<tr>
<td>Detailed Transmission Network Analysis of a Large Opiate-Driven Outbreak of HIV Infection in the United States</td>
<td>2017</td>
<td>Campbell, Ellsworth et al.</td>
<td>The Journal of Infectious Diseases</td>
</tr>
<tr>
<td>Molecular epidemiology of a primarily MSM acute HIV-1 cohort in Bangkok, Thailand and connections within networks of transmission in Asia</td>
<td>2018</td>
<td>Chang, David et al.</td>
<td>Journal of the International AIDS Society</td>
</tr>
<tr>
<td>Molecular Epidemiology of HIV Type 1 Subtypes in Taiwan: Outbreak of HIV Type 1 CRF07–BC Infection in Intravenous Drug Users</td>
<td>2006</td>
<td>Chang, Sui-Yuan et al.</td>
<td>AIDS Research and Human Retroviruses</td>
</tr>
<tr>
<td>Molecular epidemiology identifies HIV transmission networks associated with younger age and heterosexual exposure among Korean individuals</td>
<td>2016</td>
<td>Chin, Bum Sik et al.</td>
<td>Journal of Medical Virology</td>
</tr>
<tr>
<td>Consent and criminalisation concerns over phylogenetic analysis of surveillance data</td>
<td>2019</td>
<td>Chung, Cecilia et al.</td>
<td>The Lancet HIV</td>
</tr>
<tr>
<td>Ethical Considerations in Global HIV Phylogenetic Research</td>
<td>2018</td>
<td>Cottart, C. E. et al.</td>
<td>The Lancet HIV</td>
</tr>
<tr>
<td>Conceptualizing a Bioethics of the Oppressed: Oppression, Structure, and Inclusion</td>
<td>2020</td>
<td>Croce, Yoann Della</td>
<td>The American Journal of Bioethics</td>
</tr>
<tr>
<td>HIV-1 Transmission Cluster With T215D Revertant Mutation Among Newly Diagnosed Patients From the Basque Country, Spain</td>
<td>2009</td>
<td>Cuenca, Maria Teresa et al.</td>
<td>J Acquir Immune Defic Syndr</td>
</tr>
<tr>
<td>Addressing Ethical Challenges in US-Based HIV Phylogenetic Research</td>
<td>2020</td>
<td>Dawson, Liza et al.</td>
<td>The Journal of Infectious Diseases</td>
</tr>
<tr>
<td>HIV-1 Genetic and Contact Networks Among Men Who Have Sex With Men May Inform Public Health Efforts</td>
<td>2018</td>
<td>Dennis, Ann M.</td>
<td>American Journal of Public Health</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Authors</td>
<td>Journal/Dataset</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Two Independent HIV Epidemics in Saint Petersburg, Russia Revealed by Molecular Epidemiology</td>
<td>2015</td>
<td>Dukhovlinova, Elena et al.</td>
<td>AIDS Research and Human Retroviruses</td>
</tr>
<tr>
<td>First Molecular Surveillance Report of HIV Type 1 in Injecting Drug Users and Female Sex Workers along the U.S.–Mexico Border</td>
<td>2007</td>
<td>Eyzaguirre, L. et al.</td>
<td>AIDS Research and Human Retroviruses</td>
</tr>
<tr>
<td>Analysis of the Driving Factors of Active and Rapid Growth Clusters Among CRF07_BC-Infected Patients in a Developed Area in Eastern China</td>
<td>2021</td>
<td>Fan, Qin et al.</td>
<td>Open Forum Infectious Diseases</td>
</tr>
<tr>
<td>Patterns of Transmitted HIV Drug Resistance in Europe Vary by Risk Group</td>
<td>2014</td>
<td>Frentz, Dineke et al.</td>
<td>PLOS ONE</td>
</tr>
<tr>
<td>Methodological synthesis of Bayesian phylodynamics, HIV-TRACE, and GEE: HIV-1 transmission epidemiology in a racially/ethnically diverse Southern U.S. context</td>
<td>2021</td>
<td>Fujimoto, Kayo et al.</td>
<td>Nature</td>
</tr>
<tr>
<td>Phylogenetic Surveillance of Viral Genetic Diversity and the Evolving Molecular Epidemiology of Human Immunodeficiency Virus Type 1</td>
<td>2007</td>
<td>Gifford, Robert et al.</td>
<td>Journal of Virology</td>
</tr>
<tr>
<td>Genetic clusters and transmission in transgender women</td>
<td>2019</td>
<td>Grät, Tiago and Joshua T. Herbeck</td>
<td>The Lancet HIV</td>
</tr>
<tr>
<td>Can Directionality of HIV Transmission be Predicted by Next-Generation Sequencing Data?</td>
<td>2018</td>
<td>Günthard, Huldrych F. and Roger Kooyos</td>
<td>The Journal of Infectious Diseases</td>
</tr>
<tr>
<td>Ethical Convergence and Ethical Possibilities: The Implications of New Materialism for Understanding the Molecular Turn in HIV, the Response to COVID-19, and the Future of Bioethics</td>
<td>2020</td>
<td>Guta, Adrian, Marilou Gagnon, and Morgan Philbin</td>
<td>The American Journal of Bioethics</td>
</tr>
<tr>
<td>Benefit of HIV Molecular Surveillance is Unclear, but Risks to Prevention Norms Are Clear</td>
<td>2020</td>
<td>Haire, Bridget</td>
<td>The American Journal of Bioethics</td>
</tr>
<tr>
<td>Defining HIV-1 transmission clusters based on sequence data</td>
<td>2017</td>
<td>Hassan, Amin S. et al.</td>
<td>AIDS</td>
</tr>
<tr>
<td>Increasing proportions of HIV-1 non-B subtypes and of NNRTI resistance between 2013 and 2016 in Germany: Results from the national molecular surveillance of new HIV-diagnoses</td>
<td>2018</td>
<td>Hauser, Andrea et al.</td>
<td>PLOS ONE</td>
</tr>
<tr>
<td>A Geographic Hotspot and Emerging Transmission Cluster of the HIV-1 Epidemic Among Older Adults in a Rural Area of Eastern China</td>
<td>2020</td>
<td>Jiang, Jun et al.</td>
<td>AIDS Research and Human Retroviruses</td>
</tr>
<tr>
<td>Assessment of HIV molecular surveillance capacity in the European Union, 2016</td>
<td>2017</td>
<td>Keating, Patrick et al.</td>
<td>Euraidsurveillance</td>
</tr>
<tr>
<td>Foreign Born Individuals with HIV in King County, WA: A Glimpse of the Future of HIV?</td>
<td>2017</td>
<td>Kerani, Roxanne et al.</td>
<td>AIDS and Behavior</td>
</tr>
<tr>
<td>Phylogenetic analysis as expert evidence in HIV transmission prosecutions</td>
<td>2016</td>
<td>Kidd, Paul</td>
<td>Australian Federation of AIDS Organisations (AFAO)</td>
</tr>
<tr>
<td>HIV-TRACE (TRAnsmission Cluster Engine): a Tool for Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens</td>
<td>2018</td>
<td>Kosakovskiy Pond, Sergei L. et al.</td>
<td>Molecular Biology and Evolution</td>
</tr>
<tr>
<td>Detailed Molecular Surveillance of the HIV-1 Outbreak Among People who Inject Drugs (PWID) in Athens During a Period of Four Years</td>
<td>2017</td>
<td>Kostaki, Evangelia et al.</td>
<td>Current HIV Research</td>
</tr>
<tr>
<td>Contribution of transgender sex workers to the complexity of the HIV-1 epidemic in the metropolitan area of Milan</td>
<td>2020</td>
<td>Lai, Alessia, et al.</td>
<td>Sexually Transmitted Infections</td>
</tr>
<tr>
<td>Ethical Justification for Conducting Public Health Surveillance Without Patient Consent</td>
<td>2012</td>
<td>Lee, Lisa et al.</td>
<td>Health Policy and Ethics</td>
</tr>
<tr>
<td>Assessing the HIV-1 epidemic in Brazilian drug users: a molecular epidemiology approach</td>
<td>2015</td>
<td>Lindenmeyer Guimarães, Monick et al.</td>
<td>PLOS ONE</td>
</tr>
<tr>
<td>How to build an HIV out of care watch list: Remaking HIV surveillance in the era of treatment as prevention</td>
<td>2020</td>
<td>Molidrem, Stephen</td>
<td>First Monday</td>
</tr>
<tr>
<td>HIV-1 molecular epidemiology evidence and transmission patterns in the Middle East and North Africa</td>
<td>2011</td>
<td>Muntaz, Ghina et al.</td>
<td>Sexually Transmitted Infections</td>
</tr>
<tr>
<td>Title</td>
<td>Year</td>
<td>Authors</td>
<td>Journal</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Molecular Surveillance of HIV-1 Infection in Krasnoyarsk Region, Russia: Epidemiology, Phylodynamics and Phylogeography</td>
<td>2019</td>
<td>Neshumaev, Dmitry et al.</td>
<td>Current HIV Research</td>
</tr>
<tr>
<td>Identifying clusters of recent and rapid HIV transmission through analysis of molecular surveillance data</td>
<td>2018</td>
<td>Oster, Alexandra et al.</td>
<td>Journal of Acquired Immune Deficiency Syndromes</td>
</tr>
<tr>
<td>Near real-time monitoring of HIV transmission hotspots from routine HIV genotyping: an implementation case study</td>
<td>2016</td>
<td>Poon, A et al.</td>
<td>The Lancet HIV</td>
</tr>
<tr>
<td>Automated analysis of phylogenetic clusters</td>
<td>2013</td>
<td>Ragonnet-Cronin, Manon et al.</td>
<td>BMC Bioinformatics</td>
</tr>
<tr>
<td>HIV transmission networks among transgender women in Los Angeles County, CA, USA: a phylogenetic analysis of surveillance data</td>
<td>2019</td>
<td>Ragonnet-Cronin, Manon et al.</td>
<td>The Lancet HIV</td>
</tr>
<tr>
<td>Sources of HIV infection among men having sex with men and implications for prevention</td>
<td>2016</td>
<td>Ratmann, O. et al.</td>
<td>Science Translational Medicine</td>
</tr>
<tr>
<td>Geographic and Temporal Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted HIV-1 Drug Resistance: An Individual-Patient- and Sequence-Level Meta-Analysis</td>
<td>2015</td>
<td>Rhee, Soo-Yon et al.</td>
<td>PLOS Medicine</td>
</tr>
<tr>
<td>Identifying Transmission Clusters with Cluster Picker and HIV-TRACE</td>
<td>2016</td>
<td>Rose, Rebecca et al.</td>
<td>AIDS Res Hum Retroviruses</td>
</tr>
<tr>
<td>Informed Consent for HIV phylogenetic research: A case study of urban individuals living with HIV approached for enrollment in an HIV study</td>
<td>2020</td>
<td>Rudolph, Abby E., Omar Martinez, Robin Davison, and Chineye Brenda Amuchi</td>
<td>EHQUIDAD</td>
</tr>
<tr>
<td>HIV-1 Sub-Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia</td>
<td>2020</td>
<td>Schloesser, Madita et al.</td>
<td>Viruses</td>
</tr>
<tr>
<td>A Public Health Model for the Molecular Surveillance of HIV Transmission in San Diego, California</td>
<td>2009</td>
<td>Smith, Davey M., Susanne May, Samantha Tweeten, Lydia Drumright, et al.</td>
<td>AIDS</td>
</tr>
<tr>
<td>Determining the Direction of Human Immunodeficiency Virus Transmission: Benefits and Potential Harms of Taking Phylogenetic Analysis One Step Further.</td>
<td>2021</td>
<td>Taylor, Barbara S. and Hugo Sapien</td>
<td>Clinical Infectious Diseases</td>
</tr>
<tr>
<td>PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity</td>
<td>2018</td>
<td>Wymant, Chris et al.</td>
<td>Molecular Biology and Evolution</td>
</tr>
<tr>
<td>Use of molecular HIV surveillance data and predictive modeling to prioritize persons for transmission-reduction interventions</td>
<td>2020</td>
<td>Xia, Qiang et al.</td>
<td>AIDSL</td>
</tr>
<tr>
<td>Prevalence, Molecular Epidemiology and Drug Resistance Pattern of Human Immunodeficiency Virus Type 1 among Injecting Drug Users in Lahore, Pakistan</td>
<td>2021</td>
<td>Yaqub, Saima et al.</td>
<td>Pakistan J. Zoel.</td>
</tr>
</tbody>
</table>
COMMUNITY, RESEARCH, AND GOVERNMENT GREY LITERATURE

<table>
<thead>
<tr>
<th>Title of Document</th>
<th>Year Published</th>
<th>Authors</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Laid Plans: Community concerns about HIV Molecular Testing</td>
<td>Unknown</td>
<td>Aaron Cogle</td>
<td>National Association of People with HIV Australia (NAPWHA)</td>
</tr>
<tr>
<td>NYC Strategy to Ending the HIV Epidemic</td>
<td>Unknown</td>
<td>Bisrat Abraham</td>
<td>NYC Department of Health</td>
</tr>
<tr>
<td>Meeting summary Responsible Use of HIV Cluster Data for Public Health Action:</td>
<td>2020</td>
<td>CDC</td>
<td>CDC</td>
</tr>
<tr>
<td>Amplifying Benefits, Minimizing Harms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerPoint Presentation: HIV Data in Action</td>
<td>2018</td>
<td>CDC</td>
<td>CDC</td>
</tr>
<tr>
<td>Sample Press Release 1: PWID</td>
<td>2018</td>
<td>CDC</td>
<td>CDC</td>
</tr>
<tr>
<td>Sample Press Release 2: MSM</td>
<td>2018</td>
<td>CDC</td>
<td>CDC</td>
</tr>
<tr>
<td>Key Considerations for Engaging With News Media During a Cluster Response</td>
<td>2018</td>
<td>CDC</td>
<td>CDC</td>
</tr>
<tr>
<td>End the HIV Epidemic: An HIV Tracing Discussion, Part 2: How Molecular HIV</td>
<td>2021</td>
<td>Diana Tondoff</td>
<td>Seattle & King County Public Health</td>
</tr>
<tr>
<td>Surveillance data are used in research - Seattle & King County’s HIV Tracing Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECDC strategic framework for the integration of molecular and genomic typing into</td>
<td>2019</td>
<td>European Centre for Disease Prevention and</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>European surveillance and multi-country outbreak investigations</td>
<td></td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>Ethical considerations for a public health response using molecular HIV</td>
<td>2017</td>
<td>Evans, D. et al.</td>
<td>Project Inform and Northwestern University</td>
</tr>
<tr>
<td>surveillance data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning about the Recent Infection Testing Algorithm (RITA)</td>
<td>2016</td>
<td>Health Service Executive</td>
<td>Health Service Executive</td>
</tr>
<tr>
<td>End the HIV Epidemic: An HIV Tracing Discussion, Part 1: Soliciting Community</td>
<td>2021</td>
<td>Jhani Henry & Roxanne Kerner</td>
<td>Seattle & King County Public Health</td>
</tr>
<tr>
<td>Feedback to Inform Public Health - Seattle & King County’s HIV Tracing Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Molecular HIV Surveillance Data to Guide Public Health Practice in NYC</td>
<td>2017</td>
<td>Lucia Torian</td>
<td>NYC Department of Health</td>
</tr>
<tr>
<td>practice?</td>
<td></td>
<td>Farsides B, Bernard E, Williams, M, Cassell J.</td>
<td></td>
</tr>
<tr>
<td>HIV Data Privacy and Confidentiality: Legal & Ethical Considerations for Health</td>
<td>2018</td>
<td>NASTAD</td>
<td>NASTAD (National Alliance of State and Territorial AIDS Directors)</td>
</tr>
<tr>
<td>Department Data Sharing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departments June 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Policy Brief)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Take: Using Cluster Detection to End the HIV Epidemic</td>
<td>2019</td>
<td>O’Neill Institute for National & Global Health Law</td>
<td>Georgetown Law</td>
</tr>
<tr>
<td>Consent form for Primary Infection Resource Consortium Network</td>
<td>2020</td>
<td>Primary Infection Resource ConsortiumNetwork</td>
<td>University of California</td>
</tr>
<tr>
<td>Molecular HIV Surveillance - Genotype Clusters Talking Points</td>
<td>2017</td>
<td>Texas Health and Human Services</td>
<td>Texas Health and Human Services</td>
</tr>
<tr>
<td>Molecular HIV Surveillance Cluster Response & Community Engagement</td>
<td>2017</td>
<td>The Bureau of HIV STD and Viral Hepatitis Prevention</td>
<td>Houston Health Department</td>
</tr>
</tbody>
</table>